Using Hermite Function for Solving Thomas-Fermi Equation
نویسندگان
چکیده
In this paper, we propose Hermite collocation method for solving Thomas-Fermi equation that is nonlinear ordinary differential equation on semi-infinite interval. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also present the comparison of this work with solution of other methods that shows the present solution is more accurate and faster convergence in this problem. Keywords—Collocation method, Hermite function, Semi-infinite, Thomas-Fermi equation.
منابع مشابه
Simplest Equation Method for nonlinear solitary waves in Thomas- Fermi plasmas
The Thomas-Fermi (TF) equation has proved to beuseful for the treatment of many physical phenomena. In this pa-per, the traveling wave solutions of the KdV equation is investi-gated by the simplest equation method. Also, the effect of differentparameters on these solitary waves is considered. The numericalresults is conformed the good accuracy of presented method.
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملThomas–fermi and Poisson Modeling of Gate Electrostatics in Graphene Nanoribbon
We describe a simple graphene nanoribbon and bottom gate system and present numerical algorithms for solving Poisson’s and Thomas–Fermi equations for electrons in the graphene nanoribbon. The Poisson’s equation is solved using finite difference and finite element methods. Using the Poisson and Thomas–Fermi equations we calculate an electrostatic potential and surface electron density in the gra...
متن کاملThe Solution of a Second-order Nonlinear Differential Equation with Neumann Boundary Conditions Using Trigonometric Scaling Functions for Hermite Interpolation
A numerical technique for solving a second-order nonlinear Neumann problem is presented. The authors approach is based on trigonometric scaling function on [0, 2π] which is constructed for Hermite interpolation. Two test problems are presented and errors plots show the efficiency of the proposed technique for the studied problem. 2000 Mathematics Subject Classification: 65L10, 65L60.
متن کاملمحاسبات توماس- فرمی برای تعیین خواص بحرانی ماده هستهای متقارن براساس رهیافت جرم مؤثر تعمیمیافته
Using mean-field and semi-classical approximation of Thomas-Fermi, within a statistical model, equation of state and critical properties of symmetric nuclear matter is studied. In this model, two body and phenomenological interaction of Myers and Swiatecki is used in phase space. By performing a functional variation of the total Helmholtz free energy of system with respect to the nucleonic di...
متن کامل